Medical Image Classification Techniques and Analysis Using Deep Learning Networks: A Review
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-15-9735-0_13
Reference30 articles.
1. Razzak, M. I., Naz, S., & Zaib, A. (2017) .Deep learning for medical image processing: Overview, challenges and future. Lecture Notes in Computational Vision and Biomechanics, 2.
2. Yadav, S. S., & Jadhav, S. M. (2019, December). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(113).
3. Lundervold, A. S., & Lundervold, A. (2019, May ). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Für Medizinische Physik, 29(2), 102–127.
4. Maier, A., Syben, C., Lasser, T., & Riess, C. (2019, May). A gentle introduction to deep learning in medical image processing. Zeitschrift Für Medizinische Physik, 29(2), 86–101.
5. Işın, A., Direkoğlu, C., & Şah, M. (2016). Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science, 102, 317–324.
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lightweight Deep Learning Model Optimization for Medical Image Analysis;International Journal of Imaging Systems and Technology;2024-09
2. Health Guardian - A inteligência artificial a serviço do tratamento das doenças tropicais negligenciadas;Anais do XIX Simpósio Brasileiro de Sistemas Colaborativos (SBSC 2024);2024-04-29
3. Fusion of GoogleNet and Capsule Neural Network models for improving bone tumor classification;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05
4. GCNN-based Combined Denoising and Classification for Improved MRI Brain Tumor Identification;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21
5. TE-CapsNet: time efficient capsule network for automatic disease classification from medical images;Multimedia Tools and Applications;2023-11-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3