Lightweight Deep Learning Model Optimization for Medical Image Analysis

Author:

Al‐Milaji Zahraa1ORCID,Yousif Hayder2ORCID

Affiliation:

1. Department of Control and Automation Techniques Engineering, BETC Southern Technical University Basrah Iraq

2. Department of Electrical Engineering Techniques, BETC Southern Technical University Basrah Iraq

Abstract

ABSTRACTMedical image labeling requires specialized knowledge; hence, the solution to the challenge of medical image classification lies in efficiently utilizing the few labeled samples to create a high‐performance model. Building a high‐performance model requires a complicated convolutional neural network (CNN) model with numerous parameters to be trained which makes the test quite expensive. In this paper, we propose optimizing a lightweight deep learning model with only five convolutional layers using the particle swarm optimization (PSO) algorithm to find the best number of kernel filters for each convolutional layer. For colored red, green, and blue (RGB) images acquired from different data sources, we suggest using stain separation using color deconvolution and horizontal and vertical flipping to produce new versions that can concentrate the representation of the images on structures and patterns. To mitigate the effect of training with incorrectly or uncertainly labeled images, grades of disease could have small variances, we apply a second‐pass training excluding uncertain data. With a small number of parameters and higher accuracy, the proposed lightweight deep learning model optimization (LDLMO) algorithm shows strong resilience and generalization ability compared with most recent research on four MedMNIST datasets (RetinaMNIST, BreastMNIST, DermMNIST, and OCTMNIST), Medical‐MNIST, and brain tumor MRI datasets.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3