A Novel Ensemble Machine Learning Model for Prediction of Zika Virus T-Cell Epitopes
Author:
Publisher
Springer Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-6285-0_23
Reference47 articles.
1. Report of Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD) on Zika Transmission (2019) Centers for disease control and prevention. https://www.cdc.gov/zika/prevention/transmission-methods.html
2. WHO (1948) Report of World Health Organization. Indian J Pediat. https://www.who.int/news-room/fact-sheets/detail/zika-virus
3. Mirza MU et al (2016) Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci Rep 2016(December):1–18. https://doi.org/10.1038/srep37313
4. Pandey RK (2018) Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J Cell Biochem 1–12. https://doi.org/10.1002/jcb.27110
5. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59(23):61
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hybrid Predictive Machine Learning Model for the Prediction of Immunodominant Peptides of Respiratory Syncytial Virus;Bioengineering;2024-08-05
2. Ensemble Machine Learning Approach for Parkinson’s Disease Detection Using Speech Signals;Mathematics;2024-05-18
3. Physicochemical properties-based hybrid machine learning technique for the prediction of SARS-CoV-2 T-cell epitopes as vaccine targets;PeerJ Computer Science;2024-04-25
4. Decision tree based ensemble machine learning model for the prediction of Zika virus T-cell epitopes as potential vaccine candidates;Scientific Reports;2022-05-12
5. Machine Learning Techniques for the Prediction of B-Cell and T-Cell Epitopes as Potential Vaccine Targets with a Specific Focus on SARS-CoV-2 Pathogen: A Review;Pathogens;2022-01-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3