Abstract
The only part of an antigen (a protein molecule found on the surface of a pathogen) that is composed of epitopes specific to T and B cells is recognized by the human immune system (HIS). Identification of epitopes is considered critical for designing an epitope-based peptide vaccine (EBPV). Although there are a number of vaccine types, EBPVs have received less attention thus far. It is important to mention that EBPVs have a great deal of untapped potential for boosting vaccination safety—they are less expensive and take a short time to produce. Thus, in order to quickly contain global pandemics such as the ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), as well as epidemics and endemics, EBPVs are considered promising vaccine types. The high mutation rate of SARS-CoV-2 has posed a great challenge to public health worldwide because either the composition of existing vaccines has to be changed or a new vaccine has to be developed to protect against its different variants. In such scenarios, time being the critical factor, EBPVs can be a promising alternative. To design an effective and viable EBPV against different strains of a pathogen, it is important to identify the putative T- and B-cell epitopes. Using the wet-lab experimental approach to identify these epitopes is time-consuming and costly because the experimental screening of a vast number of potential epitope candidates is required. Fortunately, various available machine learning (ML)-based prediction methods have reduced the burden related to the epitope mapping process by decreasing the potential epitope candidate list for experimental trials. Moreover, these methods are also cost-effective, scalable, and fast. This paper presents a systematic review of various state-of-the-art and relevant ML-based methods and tools for predicting T- and B-cell epitopes. Special emphasis is placed on highlighting and analyzing various models for predicting epitopes of SARS-CoV-2, the causative agent of COVID-19. Based on the various methods and tools discussed, future research directions for epitope prediction are presented.
Funder
Kuwait Foundation for Advancement of Sciences
Subject
Infectious Diseases,Microbiology (medical),General Immunology and Microbiology,Molecular Biology,Immunology and Allergy
Reference134 articles.
1. Immunology Guidebook|ScienceDirecthttps://www.sciencedirect.com/book/9780121983826/immunology-guidebook
2. COVID Live Update: 270,426,226 Cases and 5,321,864 Deaths from the Coronavirus—Worldometerhttps://www.worldometers.info/coronavirus/
3. WHO Director-General’s opening remarks at the 8th meeting of the IHR Emergency Committee on COVID-19—14 July 2021https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-8th-meeting-of-the-ihr-emergency-committee-on-covid-19-14-july-2021
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献