Machine Learning and Data Mining Methods in Testing and Diagnostics of Analog and Mixed-Signal Integrated Circuits: Case Study
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-13-5758-9_21
Reference14 articles.
1. Chakrabarti, S., Chatterjee, A.: Compact fault dictionary construction for efficient isolation of faults in analog and mixed-signal circuits. In: Proceedings of 20th Anniversary Conference on Advanced Research in VLSI (ARVLSI 1999), Atlanta, GA, pp. 327–341 (1999). https://doi.org/10.1109/ARVLSI.1999.756057
2. Aminian, M., Aminian, F.: A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor. IEEE Trans. Instrum. Meas. 56(5), 1546–1554 (2007). https://doi.org/10.1109/TIM.2007.904549
3. Huang, K., Stratigopoulos, H.G., Mir, S.: Fault diagnosis of analog circuits based on machine learning. In: Proceedings of Design, Automation and Test in Europe Conference and Exhibition (DATE 2010), Dresden, pp. 1761–1766 (2010). https://doi.org/10.1109/DATE.2010.5457099
4. Lang, R., Xu, Z., Gao, F.: Data-driven fault diagnosis method for analog circuits based on robust competitive agglomeration. J. Syst. Eng. Electron. 24(4), 706–712 (2013). https://doi.org/10.1109/JSEE.2013.00082
5. Sun, Y., Chen, G., Li, H.: Fuzzy clustering and SVM method for diagnosing analog circuits single soft fault. J. Comput.-Aided Des. Comput. Graph. 20(5), 612–617 (2008)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault Detection in Analog/Digtal VLSI Circuits based on Artificial Intelligence;2023 IEEE 6th International Conference on Electronics and Communication Engineering (ICECE);2023-12-15
2. Functional Testing of On-chip Analog/RF Circuits using Machine Learning based Regression Models;2022 IEEE International Test Conference India (ITC India);2022-07-24
3. An Effect of Binarization on Handwritten Digits Recognition by Hierarchical Neural Networks;Lecture Notes in Networks and Systems;2021-09-10
4. Hierarchical Convolutional Neural Network for Handwritten Digits Recognition;Procedia Computer Science;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3