1. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
2. Blunsom, P., Cho, K., Dyer, C., Schütze, H.: From characters to understanding natural language (c2nlu): robust end-to-end deep learning for NLP (dagstuhl seminar 17042). In: Dagstuhl Reports, vol. 7, no. 1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)
3. Andersson, O., Wzorek, M., Doherty, P.: Deep learning quadcopter control via risk-aware active learning. In: AAAI, pp. 3812–3818 (2017)
4. Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Upcroft, B., Abbeel, P., Burgard, W., Milford, M., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37(4–5), 405–420 (2018)
5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)