A swarm‐optimized microbial colony counter

Author:

M S Sannidhan1ORCID,Martis Jason Elroy2ORCID,Krivic Senka3,K B Sudeepa1,Nazareth Pradeep4

Affiliation:

1. Department of Computer Science and Engineering NMAM Institute of Technology (Nitte Deemed to be University), Nitte Mangalore India

2. Department of Information Science and Engineering NMAM Institute of Technology (Nitte Deemed to be University), Nitte Mangalore India

3. Faculty of Electrical Engineering University of Sarajevo Sarajevo Bosnia and Herzegovina

4. Department of Artificial Intelligence and Machine Learning Alva's Institute of Engineering and Technology Moodabidre India

Abstract

AbstractThe identification of bacterial colonies is deemed to be crucial in microbiology as it helps in identifying specific categories of bacteria. The careful examination of colony morphology plays a crucial role in microbiology laboratories for the identification of microorganisms. Quantifying bacterial colonies on culture plates is a necessary task in Clinical Microbiology Laboratories, but it can be time‐consuming and susceptible to inaccuracies. Therefore, there is a need to develop an automated system that is both dependable and cost‐effective. Advancements in Deep Learning have played a crucial role in improving processes by providing maximum accuracy with a negligible amount of error. This research proposes an automated technique to extract the bacterial colonies using SegNet, a semantic segmentation network. The segmented colonies are then counted with the assistance of blob counter to accomplish the activity of colony counting. Furthermore, to ameliorate the proficiency of the segmentation network, the network weights are optimized using a swarm optimizer. The proposed methodology is both cost‐effective and time‐efficient, while also providing better accuracy and precise colony counts, ensuring the elimination of human errors involved in traditional colony counting techniques. The investigative assessments were carried out on three distinct sets of data: Microorganism, DIBaS, and tailored datasets. The results obtained from these assessments revealed that the suggested framework attained an accuracy rate of 88.32%, surpassing other conventional methodologies with the utilization of an optimizer.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3