Author:
Xie Xiaobo,Xiong Jian,Lu Liguo,Gui Guan,Yang Jie,Fan Shangan,Li Haibo
Reference10 articles.
1. Maloof, MA.: Learning when data sets are imbalanced and when costs are unequal and unknown. In: ICML-2003 Workshop on Learning from Imbalanced Data Sets II (2003)
2. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)
3. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsl. 6(1), 20–29 (2004)
4. Hanif, A., Azhar, N.: Resolving class imbalance and feature selection in customer churn dataset. In: International Conference on Frontiers of Information Technology. IEEE, pp. 82–86 (2018)
5. Gaffer, S.M., Yahia, M.E., Ragab, K.: Genetic fuzzy system for intrusion detection: Analysis of improving of multiclass classification accuracy using KDDCup-99 imbalance dataset. In: International Conference on Hybrid Intelligent Systems. IEEE, pp. 318–323 (2013)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献