Federated learning model for credit card fraud detection with data balancing techniques

Author:

Abdul Salam MustafaORCID,Fouad Khaled M.,Elbably Doaa L.,Elsayed Salah M.

Abstract

AbstractIn recent years, credit card transaction fraud has resulted in massive losses for both consumers and banks. Subsequently, both cardholders and banks need a strong fraud detection system to reduce cardholder losses. Credit card fraud detection (CCFD) is an important method of fraud prevention. However, there are many challenges in developing an ideal fraud detection system for banks. First off, due to data security and privacy concerns, various banks and other financial institutions are typically not permitted to exchange their transaction datasets. These issues make traditional systems find it difficult to learn and detect fraud depictions. Therefore, this paper proposes federated learning for CCFD over different frameworks (TensorFlow federated, PyTorch). Second, there is a significant imbalance in credit card transactions across all banks, with a small percentage of fraudulent transactions outweighing the majority of valid ones. In order to demonstrate the urgent need for a comprehensive investigation of class imbalance management techniques to develop a powerful model to identify fraudulent transactions, the dataset must be balanced. In order to address the issue of class imbalance, this study also seeks to give a comparative analysis of several individual and hybrid resampling techniques. In several experimental studies, the effectiveness of various resampling techniques in combination with classification approaches has been compared. In this study, it is found that the hybrid resampling methods perform well for machine learning classification models compared to deep learning classification models. The experimental results show that the best accuracy for the Random Forest (RF); Logistic Regression; K-Nearest Neighbors (KNN); Decision Tree (DT), and Gaussian Naive Bayes (NB) classifiers are 99,99%; 94,61%; 99.96%; 99,98%, and 91,47%, respectively. The comparative results show that the RF outperforms with high performance parameters (accuracy, recall, precision and f score) better than NB; RF; DT and KNN. RF achieve the minimum loss values with all resampling techniques, and the results, when utilizing the proposed models on the entire skewed dataset, achieved preferable outcomes to the unbalanced dataset. Furthermore, the PyTorch framework achieves higher prediction accuracy for the federated learning model than the TensorFlow federated framework but with more computational time.

Funder

Benha University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3