1. Jeremy Irvin, P.R.: CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert comparison. arXiv:1901.07031v1 (2019). https://stanfordmlgroup.github.io/competitions/chexpert/
2. Candemir, S., Antani, S.: A review on lung boundary detection in chest X-rays. Int. J. Comput. Assist. Radiol. Surg. 14(4), 563–576 (2019). https://doi.org/10.1007/s11548-019-01917-1
3. Chilamkurthy, S.: A 2017 Guide to Semantic Segmentation with Deep Learning, 5 July 2017. https://blog.qure.ai/: https://blog.qure.ai/notes/semantic-segmentation-deep-learning-review. Accessed 6 June 2020
4. Pasa, F., Golkov, V.: Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Nat. Sci. Rep. 9, 6268 (2019). https://doi.org/10.1038/s41598-019-42557-4
5. Ramprasaath, R., Selvaraju, M.C.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. arXiv:1610.02391v4 (2019)