Author:
Verma Rohitash,Nanda Satyasai Jagannath
Publisher
Springer Nature Singapore
Reference19 articles.
1. Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226–231 (1996)
2. Ester, M., Wittmann, R.: Incremental generalization for mining in a data warehousing environment. In: International Conference on Extending Database Technology, pp. 135–149. Springer (1998)
3. Birant, D., Kut, A.: St-dbscan: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)
4. Liu, P., Zhou, D., Wu, N.: Vdbscan: varied density based spatial clustering of applications with noise. In: 2007 International Conference on Service Systems and Service Management, pp. 1–4. IEEE (2007)
5. Campello, R.J.G.B., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Disc. Data (TKDD) 10(1), 1–51 (2015)