Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection

Author:

Campello Ricardo J. G. B.1,Moulavi Davoud2,Zimek Arthur3,Sander Jörg2

Affiliation:

1. Department of Computer Sciences, University of São Paulo, Brazil

2. Department of Computing Science, University of Alberta, Canada

3. Ludwig-Maximilians-Universität München, Germany

Abstract

An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan’s classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of “outlierness” can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a “flat” (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods.

Funder

NSERC

FAPESP

CNPq

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 401 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3