A Multi-level Access Technique for Privacy-Preserving Perturbation in Association Rule Mining
Author:
Komal Kumar N.ORCID,
Vigneswari D.ORCID
Publisher
Springer Singapore
Reference19 articles.
1. Chow R, Golle P, Staddon J (2008) Detecting privacy leaks using corpus-based association rules. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’08). Association for Computing Machinery, New York, NY, USA, 893–901.
https://doi.org/10.1145/1401890.1401997
2. Gkoulalas-Divanis A, Verykios VS (2010) Introduction. In: Association rule hiding for data mining. Advances in database systems, vol 41. Springer, Boston.
https://doi.org/10.1007/978-1-4419-6569-1_1
3. Vigneswari, Komal Kumar N, Bharath Kumar GV, Vamsi Krishna M (2018) Performance comparison of privacy preserving perturbation algorithms in association rule mining. Adv Eng Res 142:1–6.
https://doi.org/10.2991/pecteam-18.2018.1
4. Sweeney L (2002) K-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness Knowl Based Syst 10(05):557–570.
https://doi.org/10.1142/S0218488502001648
5. Samarati P (2001) Protecting respondents identities in microdata release. IEEE Trans Knowl Data Eng 13(6):1010–1027.
https://doi.org/10.1109/69.971193