Author:
Dumka Ankur,Chaudhari Vaibhav,Gangotkar Durgaprasad,Ashok Alaknanda,Yadav Dharmendra
Publisher
Springer Nature Singapore
Reference12 articles.
1. Nepal U, Eslamiat H (2022) Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs. Sensors 22(2):464
2. Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement, University of Washington. arXiv:1804.02767v1 [cs.CV]
3. Viraktamath SV, Yavagal M, Byahatti R (2021) Object detection and classification using YOLOv3. Int J Eng Res Technol (IJERT) 10(2):1–6. ISSN: 2278–0181
4. Huang R, Pedoeem J, Chen C (2018) YOLO-LITE: a real-time object detection algorithm optimized for non-GPU computers. arXiv:1811.05588v1 [cs.CV]
5. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. arXiv:2004.10934v1 [cs.CV]