ALVIO: Adaptive Line and Point Feature-Based Visual Inertial Odometry for Robust Localization in Indoor Environments
Author:
Jung KwangYikORCID, Kim YeEunORCID, Lim HyunJunORCID, Myung HyunORCID
Publisher
Springer Singapore
Reference18 articles.
1. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3565–3572, (2007) 2. Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertialodometry using a direct EKF-based approach. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 298–304, (2015). 3. Bloesch, M., Burri, M., Omari, S., Hutter, M., Siegwart, R.: Iteratedextended Kalman filter based visual-inertial odometry using direct photometric feedback. Int. J. Robot. Res. 36(10), 1053–1072 (2017) 4. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34(3), 314–334 (2015) 5. Qin, T., Li, P., Shen, S.: VINS-mono: a robust and versatile monocularvisual-inertial state estimator. IEEE Trans. Robot. 34(4), 1004–1020 (2018)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|