Author:
Wang Qingyuan,Chen Chen,Zhang Long,Song Xiaoxuan,Li Honggang,Zhao Qingjie,Niu Bingxin,Gu Junhua
Publisher
Springer Nature Singapore
Reference15 articles.
1. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 922–929 (2019)
2. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)
3. Han, L., Du, B., Sun, L., Fu, Y., Lv, Y., Xiong, H.: Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 547–555 (2021)
4. Li, Y., Shahabi, C.: A brief overview of machine learning methods for short-term traffic forecasting and future directions. Sigspatial Special 10(1), 3–9 (2018)
5. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting (2017). arXiv preprint arXiv:1709.04875