Affiliation:
1. University of Southern California
Abstract
Short-term traffic forecasting is a vital part of intelligent transportation systems. Recently, the combination of unprecedented data availability and the repaid development of machine learning techniques have brought on immense advancement in this field. In this paper, we aim to provide a brief overview of machine learning approaches for short-term traffic forecasting to facilitate research in related fields. We first introduce traffic forecasting and the challenges, and then introduce different approaches for modeling the temporal and/or spatial dependencies. Finally, we discuss several important directions for the future research.
Publisher
Association for Computing Machinery (ACM)
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献