Publisher
Springer Nature Singapore
Reference56 articles.
1. Allgower, B. (2003). Introduction to fire danger rating and remote sensing- will remote sensing enhance wildlife fire danger rating? In E. Chuvieco, Wildland fire danger: estimation and mapping: the role of remote sensing data. Singapore: World Scientific. (pp. 1–20). World Scientific Publishing Co. Pvt. Ltd.
2. Anthropocene. (2022). Retrieved 2022, from https://www.anthropocenemagazine.org: https://www.anthropocenemagazine.org/2020/09/humans-cause-most-wildfires-that-threaten-homes-in-the-united-states/?gclid=EAIaIQobChMItq-Sz6jY-AIVzJNmAh07dA-oEAMYASAAEgKlE_D_BwE: https://www.anthropocenemagazine.org/2020/09/humans-cause-most-wildfires-that-threaten-homes-in-the-united-states/?gclid=EAIaIQobChMItq-Sz6jY-AIVzJNmAh07dA-oEAMYASAAEgKlE_D_BwE
3. Babu, S. K. V., Roy, A., & Prasad, P. R. (2017). Forest fire risk modelling in Uttarakhand Himalaya using TERRA satellite datasets. European Journal of Remote Sensing, 49(1), 381–395. https://doi.org/10.5721/EuJRS20164921.
4. Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20(22), 6442. https://doi.org/10.3390/S20226442
5. Banerjee, P. (2021). MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms. Natural Hazards, 110(2), 899–935. https://doi.org/10.1007/S11069-021-04973-6