Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology
Reference106 articles.
1. Al Janabi S, Al Shourbaji I, Salman MA (2018) Assessing the suitability of soft computing approaches for forest fires prediction. Appl Comput Inform 14(2):214–224. https://doi.org/10.1016/j.aci.2017.09.006
2. Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA (2021) GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front 12(2):857–876. https://doi.org/10.1016/j.gsf.2020.09.004
3. Andreas M (2013) Re: is random forest better than support vector machines? Retrieved from: https://www.researchgate.net/post/Is_random_forest_better_than_support_vector_machines/52b4159dd4c1185d468b460d/citation/download
4. Argyrous G (2011) Statistics for research: with a guide to SPSS (3 edition). SAGE Publications Ltd
5. Arpaci A, Malowerschnig B, Sass O, Vacik H (2014) Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr 53:258–270. https://doi.org/10.1016/j.apgeog.2014.05.015
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献