1. Abstreiter, K., Mittal, S., Bauer, S., Schölkopf, B., Mehrjou, A.: Diffusion-based representation learning. arXiv preprint arXiv:2105.14257 (2021)
2. Amit, T., Shaharbany, T., Nachmani, E., Wolf, L.: Segdiff: image segmentation with diffusion probabilistic models. arXiv preprint arXiv:2112.00390 (2021)
3. Chefer, H., Alaluf, Y., Vinker, Y., Wolf, L., Cohen-Or, D.: Attend-and-excite: attention-based semantic guidance for text-to-image diffusion models. ACM Trans. Graph. 42(4), 1–10 (2023)
4. Chen, S., Sun, P., Song, Y., Luo, P.: Diffusiondet: diffusion model for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 19830–19843 (2023)
5. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Proceedings of Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)