Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models

Author:

Chefer Hila1ORCID,Alaluf Yuval1ORCID,Vinker Yael1ORCID,Wolf Lior1ORCID,Cohen-Or Daniel1ORCID

Affiliation:

1. Tel Aviv University, Tel Aviv, Israel

Abstract

Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect , where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes ( e.g. , colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN) , where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite , we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen --- or excite --- their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts. Code is available at our project page: https://attendandexcite.github.io/Attend-and-Excite/.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference51 articles.

1. Samira Abnar and Willem Zuidema . 2020. Quantifying Attention Flow in Transformers. ArXiv abs/2005.00928 ( 2020 ). Samira Abnar and Willem Zuidema. 2020. Quantifying Attention Flow in Transformers. ArXiv abs/2005.00928 (2020).

2. Specifying Object Attributes and Relations in Interactive Scene Generation

3. Omri Avrahami , Ohad Fried , and Dani Lischinski . 2022a. Blended Latent Diffusion. arXiv preprint arXiv:2206.02779 ( 2022 ). Omri Avrahami, Ohad Fried, and Dani Lischinski. 2022a. Blended Latent Diffusion. arXiv preprint arXiv:2206.02779 (2022).

4. Omri Avrahami , Thomas Hayes , Oran Gafni , Sonal Gupta , Yaniv Taigman , Devi Parikh , Dani Lischinski , Ohad Fried , and Xi Yin . 2022b. SpaText: Spatio-Textual Representation for Controllable Image Generation. arXiv preprint arXiv:2211.14305 ( 2022 ). Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani Lischinski, Ohad Fried, and Xi Yin. 2022b. SpaText: Spatio-Textual Representation for Controllable Image Generation. arXiv preprint arXiv:2211.14305 (2022).

5. Yogesh Balaji , Seungjun Nah , Xun Huang , Arash Vahdat , Jiaming Song , Karsten Kreis , Miika Aittala , Timo Aila , Samuli Laine , Bryan Catanzaro , Tero Karras , and Ming-Yu Liu . 2022. eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers. ArXiv abs/2211.01324 ( 2022 ). Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. 2022. eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers. ArXiv abs/2211.01324 (2022).

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking local-to-global representation learning for rotation-invariant point cloud analysis;Pattern Recognition;2024-10

2. Deepfake: definitions, performance metrics and standards, datasets, and a meta-review;Frontiers in Big Data;2024-09-04

3. Diverse and tailored image generation for zero-shot multi-label classification;Knowledge-Based Systems;2024-09

4. Create Your World: Lifelong Text-to-Image Diffusion;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-09

5. Revolutionizing Visuals: The Role of Generative AI in Modern Image Generation;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3