Author:
Niyas S.,Priya Shraddha,Oswal Reena,Mathew Tojo,Kini Jyoti R.,Rajan Jeny
Publisher
Springer Nature Singapore
Reference30 articles.
1. Abubakar, M., Howat, W.J., Daley, F., Zabaglo, L., McDuffus, L.A., Blows, F., Coulson, P., Raza Ali, H., Benitez, J., Milne, R., et al.: High-throughput automated scoring of ki67 in breast cancer tissue microarrays from the breast cancer association consortium. J. Pathol. Clin. Res. 2(3), 138–153 (2016)
2. Gerdes, J., Li, L., Schlueter, C., Duchrow, M., Wohlenberg, C., Gerlach, C., Stahmer, I., Kloth, S., Brandt, E., Flad, H.D.: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody ki-67. Am. J. Pathol. 138(4), 867 (1991)
3. Goldhirsch, A., Winer, E.P., Coates, A., Gelber, R., Piccart-Gebhart, M., Thürlimann, B., Senn, H.J., Albain, K.S., André, F., Bergh, J., et al.: Personalizing the treatment of women with early breast cancer: highlights of the st gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol. 24(9), 2206–2223 (2013)
4. Hall, B.H., Ianosi-Irimie, M., Javidian, P., Chen, W., Ganesan, S., Foran, D.J.: Computer-assisted assessment of the human epidermal growth factor receptor 2 immunohistochemical assay in imaged histologic sections using a membrane isolation algorithm and quantitative analysis of positive controls. BMC Med. Imaging 8(1), 1–13 (2008)
5. Jamaluddin, M.F., Fauzi, M.F., Abas, F.S., Lee, J.T., Khor, S.Y., Teoh, K.H., Looi, L.M.: Cell classification in er-stained whole slide breast cancer images using convolutional neural network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 632–635. IEEE (2018)