Publisher
Springer Nature Singapore
Reference24 articles.
1. Ma, H., et al.: Cross-dependent graph neural networks for molecular property prediction. Bioinformatics 38(7), 2003–2009 (2022)
2. Cui, H., et al.: Interpretable graph neural networks for connectome-based brain disorder analysis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Cham: Springer Nature Switzerland, 2022.
3. Wang, Y., et al.: Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)
4. Wen, H., Ding, J., Jin, W., Wang, Y., Xie, Y., Tang, J.: Graph neural networks for multimodal single-cell data integration. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4153–4163 (2022)
5. Hernández, Q., Badías, A., Chinesta, F., Cueto, E.: Thermodynamics-informed graph neural networks (2022). arXiv preprint arXiv:2203.01874