1. Ian, J.G., Jean, P.A., Mehdi, M., Bing, X., David, W.F., Sherjil, O., Aaron, C., Yoshua, B.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)
2. Changjin, L., Jian, C., Xing, Z.: Design and implementation of an infrared image generative model. In: 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, pp. 1338–1345. IEEE, Dalian (2020)
3. Zhixiang, W., Zheng, W., Yinqiang, Z., Yung-Yu, C., Shin’ichi, S.: Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 618–626. IEEE, Long Beach (2019)
4. Guan’an, W., Tianzhu, Z., Jian, C., Si, L., Yang, Y., Zengguang, H.: RGB-infrared cross-modality person re-identification via joint pixel and feature alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3623–3632. IEEE, Seoul (2019)
5. Foji, C., Feng, Z., Qingxiao, W., Yingming, H., Ende, W.: Infrared image data augmentation based on generative adversarial network. J. Comput. Appl. 40(7), 2084–2088 (2020)