Quantum-Dot-Based Photonic Reservoir Computing

Author:

Tate Naoya

Abstract

AbstractReservoir computing is a novel computational framework based on the characteristic behavior of recurrent neural networks. In particular, a recurrent neural network for reservoir computing is defined as a reservoir, which is implemented as a fixed and nonlinear system. Recently, to overcome the limitation of data throughput between processors and storage devices in conventional computer systems during processing, known as the Von Neumann bottleneck, physical implementations of reservoirs have been actively investigated in various research fields. The author’s group has been currently studying a quantum dot reservoir, which consists of coupled structures of randomly dispersed quantum dots, as a physical reservoir. The quantum dot reservoir is driven by sequential signal inputs using radiation with laser pulses, and the characteristic dynamics of the excited energy in the network are exhibited with the corresponding spatiotemporal fluorescence outputs. We have presented the fundamental physics of a quantum dot reservoir. Subsequently, experimental methods have been introduced to prepare a practical quantum dot reservoir. Next, we have presented the experimental input/output properties of our quantum dot reservoir. Here, we experimentally focused on the relaxation of fluorescence outputs, which indicates the characteristics of optical energy dynamics in the reservoir, and qualitatively discussed the usability of quantum dot reservoirs based on their properties. Finally, we have presented experimental reservoir computing based on spatiotemporal fluorescence outputs from a quantum dot reservoir. We consider that the achievements of quantum dot reservoirs can be effectively utilized for advanced reservoir computing.

Publisher

Springer Nature Singapore

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3