A review of emerging trends in photonic deep learning accelerators

Author:

Atwany Mohammad,Pardo Sarah,Serunjogi Solomon,Rasras Mahmoud

Abstract

Deep learning has revolutionized many sectors of industry and daily life, but as application scale increases, performing training and inference with large models on massive datasets is increasingly unsustainable on existing hardware. Highly parallelized hardware like Graphics Processing Units (GPUs) are now widely used to improve speed over conventional Central Processing Units (CPUs). However, Complementary Metal-oxide Semiconductor (CMOS) devices suffer from fundamental limitations relying on metallic interconnects which impose inherent constraints on bandwidth, latency, and energy efficiency. Indeed, by 2026, the projected global electricity consumption of data centers fueled by CMOS chips is expected to increase by an amount equivalent to the annual usage of an additional European country. Silicon Photonics (SiPh) devices are emerging as a promising energy-efficient CMOS-compatible alternative to electronic deep learning accelerators, using light to compute as well as communicate. In this review, we examine the prospects of photonic computing as an emerging solution for acceleration in deep learning applications. We present an overview of the photonic computing landscape, then focus in detail on SiPh integrated circuit (PIC) accelerators designed for different neural network models and applications deep learning. We categorize different devices based on their use cases and operating principles to assess relative strengths, present open challenges, and identify new directions for further research.

Funder

New York University Abu Dhabi

Publisher

Frontiers Media SA

Reference204 articles.

1. Deep learning in neural networks: an overview;Schmidhuber;Neural networks,2015

2. Progress in digital integrated electronics;Moore,1975

3. Imagenet classification with deep convolutional neural networks;Krizhevsky;Adv Neural Inf Process Syst,2012

4. High performance convolutional neural networks for document processing;Chellapilla,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3