Role of Transfer Learning in Glioma Grading
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-16-7952-0_2
Reference25 articles.
1. Mehrotra R, Ansari MA, Agrawal R, Anand RS (2020) A transfer learning approach for AI-based classification of brain tumors. Mach Learn Appl 2:100003.https://doi.org/10.1016/j.mlwa.2020.100003
2. Lo C-M, Chen Y-C, Weng R-C, Hsieh K-C (2019) Intelligent glioma grading based on deep transfer learning of MRI radiomic features. Appl Sci 9(22):4926. https://doi.org/10.3390/app9224926
3. Chelghoum R, Ikhlef A, Hameurlaine A, Jacquir S (2020) Transfer learning using convolutional neural network architectures for brain tumor classification from MRI images. In: Maglogiannis I, Iliadis L, Pimenidis E (eds) Artificial intelligence applications and innovations. AIAI 2020. IFIP advances in information and communication technology, vol 583. Springer, Cham. https://doi.org/10.1007/978-3-030-49161-1_17
4. Trivizakis E, Papadakis GZ, Souglakos I, Papanikolaou N, Koumakis L, Spandidos DA, Tsatsakis A, Karantanas AH Marias K (2020) Artificial intelligence radiogenomics for advancing precision and effectiveness in oncologic care (Review). Int J Oncol 57:43–53. https://doi.org/10.3892/ijo.2020.5063
5. Bae S, An C, Ahn SS et al (2020) Robust performance of deep learning for distinguishing glioblastoma from single brain metastasis using radiomic features: model development and validation. Sci Rep 10:12110. https://doi.org/10.1038/s41598-020-68980-6
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Machine Learning Approach for Segmentation and Classification of Brain Tumor Cells;Proceedings of 7th ASRES International Conference on Intelligent Technologies;2023
2. Efficient Net-B6 model-based Transfer Learning For The Classification of Brain Tumors;SSRN Electronic Journal;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3