Transfer Learning Using Convolutional Neural Network Architectures for Brain Tumor Classification from MRI Images
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-49161-1_17
Reference33 articles.
1. Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (Simplified) with ANTsR. Neuroinform 13(2), 209–225 (2015). https://doi.org/10.1007/s12021-014-9245-2
2. Zacharaki, E.I., et al.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62(6), 1609–1618 (2009). https://doi.org/10.1002/mrm.22147
3. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)
4. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005
5. Dung, C.V., Anh, L.D.: Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 99, 52–58 (2019). https://doi.org/10.1016/j.autcon.2018.11.028
Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pediatric brain tumor classification using deep learning on MR-images with age fusion;2024-09-06
2. A Linear time shrinking-SL(t)-ViT approach for brain tumor identification and categorization;IETE Journal of Research;2024-08-28
3. DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain Tumor Detection;Big Data and Cognitive Computing;2024-08-25
4. Mask region-based convolutional neural network and VGG-16 inspired brain tumor segmentation;Scientific Reports;2024-07-30
5. Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and DINOv2 in Medical Imaging Classification;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3