Publisher
Springer Nature Singapore
Reference11 articles.
1. Ho, K.H., Newman, S.T.: State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 43(13), 1287–1300 (2003). https://doi.org/10.1016/S0890-6955(03)00162-7
2. Ramaswamy, G.A., Krishna, A., Gautham, M., Sudharshan, S.S., Gokulachandran, J.: Optimisation and prediction of machining parameters in EDM for Al-ZrO2 using soft computing techniques with Taguchi method. IJPMB 11(6), 864 (2021). https://doi.org/10.1504/IJPMB.2021.118323
3. Sarıkaya, M., Yılmaz, V.: Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel. Neural Comput. Appl. 30(5), 1503–1517 (2018). https://doi.org/10.1007/s00521-016-2775-9
4. Balasubramaniam, V., Baskar, N., Narayanan, C.S.: Optimization of electrical discharge machining parameters using artificial neural network with different electrodes. In: 5th International & 26th All India Manufacturing Technology, Design and Research Conference (2014)
5. Ong, P., Chong, C.H., bin Rahim, M.Z., Lee, W.K., Sia, C.K., bin Ahmad, M.A.H.: Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond. J. Intell. Manuf. 31(1), 227–247 (2020). https://doi.org/10.1007/s10845-018-1443-6
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献