Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
http://link.springer.com/article/10.1007/s00521-016-2775-9/fulltext.html
Reference38 articles.
1. Meral G, Sarıkaya M, Dilipak H, Şeker U (2015) Multi-response optimization of cutting parameters for hole quality in drilling of AISI 1050 steel. Arab J Sci Eng 40(12):3709–3722
2. Chow HM, Lee SM, Yang LD (2008) Machining characteristic study of friction drilling on AISI 304 stainless steel. J Mater Process Technol 207(1):180–186
3. Kuram E, Ozcelik B (2013) Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill. Measurement 46(6):1849–1864
4. Yılmaz V, Sarıkaya M, Dilipak H (2015) Deep micro-hole drilling for Hadfield steel by electro-discharge machining (EDM). Mater Technol 49(3):377–386
5. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84
Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Examination of Minimum Quantity Lubrication Performance in the Hard Turning of AISI/SAE 1060 High-Carbon Steel;Journal of Materials Engineering and Performance;2024-09-10
2. Assessing the performance of state-of-the-art machine learning algorithms for predicting electro-erosion wear in cryogenic treated electrodes of mold steels;Advanced Engineering Informatics;2024-08
3. Multi-response optimization and characterization for micro-EDM drilling of stainless steel (AISI 304) using a hybrid DFA-fuzzy logic approach;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-05-25
4. Parametric assessment of electrical discharge drilling on plasma sprayed functionally graded Al/Al2O3 coating on Al6061-T6 faceplates;Physica Scripta;2024-01-11
5. Modelling Micro-Edm Operations with Machining Uncertainties: An Integrated Approach Using Artificial Neural Networks and Model Ensembling;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3