Hybrid Deep Learning Approach for Classifying Alzheimer Disease Based on Multimodal Data
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-32-9515-5_49
Reference15 articles.
1. Dessouky, M.M., Elrashidy, M.A., Taha, T.E., Abdelkader, H.M.: Selecting and extracting effective features for automated diagnosis of Alzheimer’s disease. Int. J. Comput. Appl. 81(4), pp. 17–28 (2013)
2. Bavkar, S., Iyer, B., Deosarkar, S.: Detection of alcoholism: an EEG hybrid features and ensemble subspace K-NN based approach. Lect. Notes Comput. Sci. 11319, 161–168 (2019)
3. Johnson, A.E., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D.A., Clifford, G.D.: Machine learning and decision support in critical care. Proc. IEEE 104(2), 444–466 (2016)
4. Schwenker, F., Trentin, E.: Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014)
5. Egorov, A.: Distributed Stream Processing with the Intention of Mining (2017)
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel hybrid model in the diagnosis and classification of Alzheimer's disease using EEG signals: Deep ensemble learning (DEL) approach;Biomedical Signal Processing and Control;2024-03
2. Deep generative adversarial networks with marine predators algorithm for classification of Alzheimer’s disease using electroencephalogram;Journal of King Saud University - Computer and Information Sciences;2023-12
3. Overview of Artificial Intelligence Methods for Alzheimer’s Disease Prediction and Progression;2023 17th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS);2023-11-08
4. Four-way classification of Alzheimer’s disease using deep Siamese convolutional neural network with triplet-loss function;Brain Informatics;2023-02-17
5. Rice Leaf Disease Classification Using Deep Learning with Fusion Concept;Computer Vision and Machine Learning in Agriculture, Volume 3;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3