Four-way classification of Alzheimer’s disease using deep Siamese convolutional neural network with triplet-loss function

Author:

Hajamohideen Faizal,Shaffi Noushath,Mahmud Mufti,Subramanian Karthikeyan,Al Sariri Arwa,Vimbi Viswan,Abdesselam Abdelhamid,

Abstract

AbstractAlzheimer’s disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer’s disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.

Funder

Ministry of Higher Education, Research and Innovation, Oman

Nottingham Trent University

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Computer Science Applications,Neurology

Reference68 articles.

1. Gauthier S, Rosa-Neto P, Morais J, Webster C (2021) World Alzheimer Report 2021: journey through the diagnosis of dementia. Alzheimer’s Dis Int

2. Rizzi L, Rosset I, Roriz-Cruz M (2014) Global epidemiology of dementia: Alzheimer’s and vascular types. BioMed Res Int

3. Tanveer M, Richhariya B, Khan R, Rashid A, Khanna P, Prasad M, Lin C (2020) Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Transac Multimedia Comput Commun Appl (TOMM) 16(1S):1–35

4. Mirzaei G, Adeli H (2022) Machine learning techniques for diagnosis of Alzheimer disease, mild cognitive disorder, and other types of dementia. Biomed Signal Process Contr 72:103293

5. Bhatele KR, Bhadauria SS (2020) Brain structural disorders detection and classification approaches: a review. Artif Intell Rev 53(5):3349–3401

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3