Publisher
Springer Nature Singapore
Reference24 articles.
1. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)
2. Ren, J., Fort, S., Liu, J., Roy, A. G., Padhy, S., Lakshminarayanan, B.: A simple fix to Mahalanobis distance for improving near-OOD detection. arXiv preprint arXiv:2106.09022 (2021)
3. Angiulli, F., Fassetti, F., Ferragina, L.: Latent out: an unsupervised deep anomaly detection approach exploiting latent space distribution. Mach. Learn. 112, 4323–4349 (2022). https://doi.org/10.1007/s10994-022-06153-4
4. Guo, J., Liu, G., Zuo, Y., Wu, J.: An anomaly detection framework based on autoencoder and nearest neighbor. In: 2018 15th International Conference on Service Systems and Service Management (ICSSSM), pp. 1-6. IEEE (2018)
5. Rashid, A.B., Ahmed, M., Sikos, L.F., Haskell-Dowland, P.: Anomaly detection in cybersecurity datasets via cooperative co-evolution-based feature selection. ACM Trans. Manage. Inf. Syst. 13(3), 1–39 (2022)