Anomaly Detection in Cybersecurity Datasets via Cooperative Co-evolution-based Feature Selection

Author:

Rashid A. N. M. Bazlur1ORCID,Ahmed Mohiuddin1,Sikos Leslie F.1,Haskell-Dowland Paul1

Affiliation:

1. Edith Cowan University, Joondalup WA, Australia

Abstract

Anomaly detection from Big Cybersecurity Datasets is very important; however, this is a very challenging and computationally expensive task. Feature selection (FS) is an approach to remove irrelevant and redundant features and select a subset of features, which can improve the machine learning algorithms’ performance. In fact, FS is an effective preprocessing step of anomaly detection techniques. This article’s main objective is to improve and quantify the accuracy and scalability of both supervised and unsupervised anomaly detection techniques. In this effort, a novel anomaly detection approach using FS, called Anomaly Detection Using Feature Selection (ADUFS), has been introduced. Experimental analysis was performed on five different benchmark cybersecurity datasets with and without feature selection and the performance of both supervised and unsupervised anomaly detection techniques were investigated. The experimental results indicate that instead of using the original dataset, a dataset with a reduced number of features yields better performance in terms of true positive rate (TPR) and false positive rate (FPR) than the existing techniques for anomaly detection. For example, with FS, a supervised anomaly detection technique, multilayer perception increased the TPR by over 200% and decreased the FPR by about 97% for the KDD99 dataset. Similarly, with FS, an unsupervised anomaly detection technique, local outlier factor increased the TPR by more than 40% and decreased the FPR by 15% and 36% for Windows 7 and NSL-KDD datasets, respectively. In addition, all anomaly detection techniques require less computational time when using datasets with a suitable subset of features rather than entire datasets. Furthermore, the performance results have been compared with six other state-of-the-art techniques based on a decision tree (J48).

Funder

Edith Cowan University (ECU) Higher Degree by Research Scholarship

ECU School of Science Research Scholarship

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3