A Sparse Latent Class Model for Cognitive Diagnosis
Author:
Funder
Spencer Foundation
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Psychology
Link
http://link.springer.com/content/pdf/10.1007/s11336-019-09693-2.pdf
Reference34 articles.
1. Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422), 669–679.
2. Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37, 3099–3132.
3. Carreira-Perpiñán, M., & Renals, S. (2000). Practical identifiability of finite mixtures of multivariate Bernoulli distributions. Neural Computation, 12, 141–152.
4. Chen, Y., Culpepper, S. A., Chen, Y., & Douglas, J. (2018). Bayesian estimation of the DINA Q-matrix. Psychometrika, 83, 89–108.
5. Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850–866.
Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An exploratory Q-matrix estimation method based on sparse non-negative matrix factorization;Behavior Research Methods;2024-07-26
2. New Paradigm of Identifiable General-response Cognitive Diagnostic Models: Beyond Categorical Data;Psychometrika;2024-07-05
3. Using Regularized Methods to Validate Q-Matrix in Cognitive Diagnostic Assessment;Journal of Educational and Behavioral Statistics;2024-04-12
4. Sufficient and Necessary Conditions for the Identifiability of DINA Models with Polytomous Responses;Psychometrika;2024-03-22
5. Identifiability of Hierarchical Latent Attribute Models;Statistica Sinica;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3