Practical Identifiability of Finite Mixtures of Multivariate Bernoulli Distributions

Author:

Carreira-Perpiñán Miguel Á.1,Renals Steve1

Affiliation:

1. Department of Computer Science, University of Sheffield, Sheffield S1 4DP, U.K.

Abstract

The class of finite mixtures of multivariate Bernoulli distributions is known to be nonidentifiable; that is, different values of the mixture parameters can correspond to exactly the same probability distribution. In principle, this would mean that sample estimates using this model would give rise to different interpretations. We give empirical support to the fact that estimation of this class of mixtures can still produce meaningful results in practice, thus lessening the importance of the identifiability problem. We also show that the expectation-maximization algorithm is guaranteed to converge to a proper maximum likelihood estimate, owing to a property of the log-likelihood surface. Experiments with synthetic data sets show that an original generating distribution can be estimated from a sample. Experiments with an electropalatography data set show important structure in the data.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3