Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM
Author:
Funder
Royalty Research Fund, University of Washington
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Psychology
Link
https://link.springer.com/content/pdf/10.1007/s11336-020-09742-1.pdf
Reference57 articles.
1. Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27(6), 395–414.
2. Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple-choice items. Educational Assessment, 11(1), 33–63.
3. Broman, K. W., & Speed, T. P. (2002). A model selection approach for the identification of quantitative trait loci in experimental crosses. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 641–656.
4. Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.
5. Chen, Y., Culpepper, S. A., Wang, S., & Douglas, J. (2018). A hidden Markov model for learning trajectories in cognitive diagnosis with application to spatial rotation skills. Applied Psychological Measurement, 42(1), 5–23.
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Latent conjunctive Bayesian network: Unify attribute hierarchy and Bayesian network for cognitive diagnosis;The Annals of Applied Statistics;2024-09-01
2. Estimating the Reliability of Skill Transitions in Longitudinal Diagnostic Classification Models;Journal of Educational and Behavioral Statistics;2024-07-31
3. A Diagnostic Facet Status Model (DFSM) for Extracting Instructionally Useful Information from Diagnostic Assessment;Psychometrika;2024-04-28
4. A One‐Parameter Diagnostic Classification Model with Familiar Measurement Properties;Journal of Educational Measurement;2024-04-24
5. Modeling Hierarchical Attribute Structures in Diagnostic Classification Models with Multiple Attempts;Journal of Educational Measurement;2024-03-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3