Estimation of Compensatory and Noncompensatory Multidimensional Item Response Models Using Markov Chain Monte Carlo

Author:

Bolt Daniel M.1,Lall Venessa F.2

Affiliation:

1. University of Wisconsin, Madison

2. Educational Testing Service, K-12 Assessments

Abstract

Markov chain Monte Carlo (MCMC) estimation is investigated for multidimensional compensatory and noncompensatory item response models. Simulation analyses are used to evaluate parameter recovery for the multidimensional two-parameter logistic model (M2PL) and the multidimensional latent trait model (MLTM) under varying conditions of sample size (1,000, 3,000), number of items (25, 50), and correlation between abilities (.0, .3, and .6). Results suggest that an MCMC procedure using a Metropolis-Hastings algorithm can recover the parameters of both models but is less successful for the MLTM as the correlation between abilities increases. In general, estimation is more accurate for the M2PL than the MLTM. A Bayes factor criterion for comparing the relative .t of the models to a common data set is investigated using simulated data. Using real data, the M2PL is found to be the superior model for a test of English usage.

Publisher

SAGE Publications

Subject

Psychology (miscellaneous),Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3