MRI-derived cardiac washout is slowed in the left ventricle and associated with left ventricular non-compaction in young patients with cryptogenic ischemic stroke

Author:

Lehmonen LauriORCID,Putaala Jukka,Pöyhönen Pauli,Kuusisto Jouni,Pirinen Jani,Sinisalo Juha,Järvinen Vesa

Abstract

AbstractTo elucidate underlying disease mechanisms, we compared transition of gadolinium-based contrast agent bolus in cardiac chambers in magnetic resonance imaging between young patents with cryptogenic ischemic stroke and stroke-free controls. We included 30 patients aged 18–50 years with cryptogenic ischemic stroke from the prospective Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Etiology, Triggers and Outcome (NCT01934725) study and 30 age- and gender-matched stroke-free controls. Dynamic contrast-enhanced T1-weighted first-pass perfusion images were acquired at 1.5 T and analyzed for transit time variables, area under curves, relative blood flow, and maximum and minimum enhancement rates in left atrial appendage, left atrium, and left ventricle. These data were compared with previously published left ventricular non-compaction data of the same study population. Arrival time of contrast agent bolus in superior vena cava was similar in patients and controls (6.7[2.0] vs. 7.1[2.5] cardiac cycles, P = 0.626). Arrival and peak times showed comparable characteristics in patients and controls (P > 0.535). The minimum enhancement rate of the left ventricle was lower in patients than in controls (− 28 ± 11 vs. − 36 ± 13 1/(cardiac cycle), P = 0.012). Area under curves, relative blood flow, and other enhancement rates showed no significant differences between patients and controls (P > 0.107). Relative blood flow of cardiac chambers correlated with non-compacted left ventricular volume ratio (P < 0.011). Our results indicate slower washout of contrast agent and blood flow stagnation in the left ventricle of young patients with cryptogenic ischemic stroke. The washout was associated with left ventricular non-compaction, suggesting conditions favoring formation of intraventricular thrombosis.

Funder

Helsingin ja Uudenmaan Sairaanhoitopiiri

Academy of Finland

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3