Longitudinal CMR assessment of cardiac global longitudinal strain and hemodynamic forces in a mouse model of heart failure

Author:

Daal Mariah R. R.,Strijkers Gustav J.ORCID,Hautemann David J.,Nederveen Aart J.,Wüst Rob C. I.,Coolen Bram F.

Abstract

AbstractTo longitudinally assess left ventricle (LV) global longitudinal strain (GLS) and hemodynamic forces during the early stages of cardiac dysfunction in a mouse model of heart failure with preserved ejection fraction (HFpEF). Cardiac MRI measurements were performed in control mice (n = 6), and db/db mice (n = 7), whereby animals were scanned four times between the age of 11–15 weeks. After the first scan, the db/db animals received a doxycycline intervention to accelerate progression of HFpEF. Systolic function was evaluated based on a series of prospectively ECG-triggered short-axis CINE images acquired from base to apex. Cardiac GLS and hemodynamic forces values were evaluated based on high frame rate retrospectively gated 2-, 3-, and 4-chamber long-axis CINE images. Ejection fraction (EF) was not different between control and db/db animals, despite that cardiac output, as well as end systolic and end diastolic volume were significantly higher in control animals. Whereas GLS parameters were not significantly different between groups, hemodynamic force root mean square (RMS) values, as well as average hemodynamic forces and the ratio between hemodynamic forces in the inferolateral-anteroseptal and apical–basal direction were lower in db/db mice compared to controls. More importantly, hemodynamic forces parameters showed a significant interaction effect between time and group. Our results indicated that hemodynamic forces parameters were the only functional outcome measure that showed distinct temporal differences between groups. As such, changes in hemodynamic forces reflect early alterations in cardiac function which can be of added value in (pre)clinical research on HFpEF.

Funder

Stichting voor de Technische Wetenschappen

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3