Abstract
Abstract
We discuss several techniques based on laser-driven interferometers and cavities to measure nanomechanical motion. With increasing complexity, they achieve sensitivities reaching from thermal displacement amplitudes, typically at the picometer scale, all the way to the quantum regime, in which radiation pressure induces motion correlated with the quantum fluctuations of the probing light. We show that an imaging modality is readily provided by scanning laser interferometry, reaching a sensitivity on the order of
$$10\, {\mathrm {fm/Hz^{1/2}}}$$
10
fm
/
Hz
1
/
2
, and a transverse resolution down to
$$2\,\upmu {\hbox {m}}$$
2
μ
m
. We compare this approach with a less versatile, but faster (single-shot) dark-field imaging technique.
Funder
Seventh Framework Programme
Natur og Univers, Det Frie Forskningsråd
Carlsbergfondet
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Reference45 articles.
1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Phys. Rev. Lett. 116, 061102 (2016)
2. D. Rugar, R. Budakian, H.J. Mamin, B.W. Chui, Nature 430, 329 (2004)
3. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)
4. Y. Tsaturyan, A. Barg, E.S. Polzik, A. Schliesser, arXiv:1608.00937 (2016)
5. J.W. Wagner, J.B. Spicer, J. Opt. Soc. Am. B 4, 1316 (1987)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献