An anisotropic damage–permeability model for hydraulic fracturing in hard rock

Author:

Liao Jianxing,Wang Hong,Mehmood Faisal,Cheng Cao,Hou ZhengmengORCID

Abstract

AbstractHydraulic fracturing is the most efficient method to exploit valued geothermal energy trapped in low-permeable hard rock, e.g. granite. Most research on the hydraulic fracturing has focused on its application in shale gas and oil. However, the hydraulic fracturing performs differently in geothermal reservoir, as the rock properties are quite different. In this work, an anisotropic damage–permeability model is developed on the fundament of continuum theory to study the hydraulic fracturing of hard rock in geothermal reservoir. The plastic-hardening and damage-softening behaviours are considered in this model. A cubic law is adopted to characterize the damage enhanced permeability. Its directional information is converted from damage tensor, while the effect of compression stress on permeability is isotropic and characterized by an impact factor. The newly developed model is calibrated and validated by a series of stress–strain curve, damage and axial permeability from triaxial tests on granite. In the application to cyclic fracturing test at Aspö Hard Rock Laboratory, the capacity of newly developed model is proven by good matching of measured injection pressure, permeability, etc. The results show clearly that the fracture is mostly activated by tensile failure in this case. Moreover, the stimulated fracture will be closed during flow back and re-activated in subsequent re-fracturing. If the fracture from previous fracturing is not re-activated completely, no new fractures will be created in current re-fracturing, and the damage amasses continuously due to repeated re-activation of closed fracture during re-fracturing.

Funder

International Cooperation Fund of Sichuan Provincial Department of Science and Technology

Doctoral Fund of Guizhou University

the Science and Technology Foundation of Guizhou Province

Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3