Predicting Water Inflow in Tunnel Construction: A Fracture Network Model with Non-Darcy Flow Considerations

Author:

Hu Ke1,Yao Liang1,Liao Jianxing1,Wang Hong1,Luo Jiashun2,Xu Xiangdong3

Affiliation:

1. College of Civil Engineering, Guizhou University, Guiyang 550025, China

2. College of Civil Engineering, Technische Universitaet Clausthal, 38678 Clausthal-Zellerfeld, Germany

3. Guizhou Transportation Planning Survey and Design Academe Co., Ltd., Guiyang 550001, China

Abstract

Fractures are widely distributed in karst areas, and when flow rates are high, they exhibit complex nonlinear behavior that cannot be accurately described by Darcy’s law. In this work, a hydro-mechanical coupling model based on a discrete fracture network is proposed to predict tunnel water inflow, accounting for the impact of non-Darcy flow. The model’s feasibility has been validated by comparing it with experimental results and the field measurements of flow rates at the Bodaoling Tunnel in Guizhou, China. The results show that Darcy flow tends to overestimate water inflow by approximately 25% compared to non-Darcy flow. The non-Darcy effect grows with the increase in initial fracture width and empirical constant q. When q exceeds 8.77 × 10−6, the growth rate of the Forchheimer number along the fracture width slowed down, and the inhibitory effect of non-Darcy flow on flow became gentle. Additionally, in a complex fracture network, the inflow rate limited by non-Darcy flow at one point drives the water flow through a connect fracture to another point, which increases the difficulty in water inflow prediction. This work highlights the importance of non-Darcy flow and fracture networks when accurately predicting water inflow in tunnels.

Funder

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3