Experimental insights into consolidation rates during one-dimensional loading with special reference to excess pore water pressure

Author:

Olek Bartłomiej SzczepanORCID

Abstract

AbstractConsolidation rate has significant influence on the settlement of structures founded on soft fine-grained soil. This paper presents the results of a series of small-scale and large-scale Rowe cell consolidation tests with pore water pressure measurements to investigate the factors affecting the consolidation process. Permeability and creep/resistance structure factors were considered as the governing factors. Intact and reconstituted marine clay from the Polish Carpathian Foredeep basin as well as clay–sand mixtures was examined in the present study. The fundamental relationship correlating consolidation degrees based on compression and pore water pressure was assessed to indicate the nonlinear soil behaviour. It was observed that the instantaneous consolidation parameters vary as the process progresses. The instantaneous coefficient of consolidation first drastically increases or decreases with increase in the degree of consolidation and stabilises in the middle stage of the consolidation; it then decreases significantly due to viscoplastic effects occurring in the soil structure. Based on the characteristics of the relationship between coefficient of consolidation and degree of dissipation at the base, the consolidation range that complies with theoretical assumptions was established. Furthermore, the influence of coarser fraction in clay–sand mixtures in controlling the consolidation rates is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3