State-of-the-Art Review on Determining One-Dimensional Consolidation Parameters Based on Compression and Distribution of Pore Water Pressure: Coefficient of Consolidation (cv), End of Primary (EOP) Consolidation

Author:

Olek Bartłomiej SzczepanORCID

Abstract

AbstractPredicting the time rate of consolidation is one of the major aspects of structure design, founded on compressible fine-grained soil. The time to achieve the required advancement of the consolidation process is proportional to the coefficient of consolidation (cv). In practical applications, the settlement rate is directly related to the excess pore water pressure dissipation rate. A plethora of interpretation methods have been proposed for determining consolidation parameters from laboratory one-dimensional consolidation test in the past decades. This state-of-the-art review presents a comprehensive literature study of available approaches for establishing both coefficient of consolidation and end of primary (EOP) consolidation using compression and pore water pressure laboratory data. The classification of the methods has been made to set in order interpretation approaches for future selection and comparisons. The first part of the paper describes approaches based on graphical curve-fitting. This part includes five approaches: square root of time fitting approach, Semi-logarithmic fitting approach, Differential methods, Hyperbolic approach, and approach based on excess pore water pressure dissipation. In addition, a method comparison study has been performed to evaluate the degree of agreement between selected methods statistically. For this purpose, simple regression and Bland & Altman differences analysis have been used. The second part refers to the computational-based approach, covering a wide range of methods centred on full-matching treated by least-squares, correlational equations linking cv with index properties and soft computing approaches. A thorough insight into recently published literature on machine learning and physics-informed deep learning incorporated to derive the representative value of cv has also been compiled.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3