Multi-scale verification of distributed synchronisation

Author:

Gainer PaulORCID,Linker SvenORCID,Dixon ClareORCID,Hustadt UllrichORCID,Fisher MichaelORCID

Abstract

AbstractAlgorithms for the synchronisation of clocks across networks are both common and important within distributed systems. We here address not only the formal modelling of these algorithms, but also the formal verification of their behaviour. Of particular importance is the strong link between the very different levels of abstraction at which the algorithms may be verified. Our contribution is primarily the formalisation of this connection between individual models and population-based models, and the subsequent verification that is then possible. While the technique is applicable across a range of synchronisation algorithms, we particularly focus on the synchronisation of (biologically-inspired) pulse-coupled oscillators, a widely used approach in practical distributed systems. For this application domain, different levels of abstraction are crucial: models based on the behaviour of an individual process are able to capture the details of distinguished nodes in possibly heterogenous networks, where each node may exhibit different behaviour. On the other hand, collective models assume homogeneous sets of processes, and allow the behaviour of the network to be analysed at the global level. System-wide parameters may be easily adjusted, for example environmental factors inhibiting the reliability of the shared communication medium. This work provides a formal bridge across the “abstraction gap” separating the individual models and the population-based models for this important class of synchronisation algorithms.

Funder

Engineering and Physical Sciences Research Council

University of Liverpool

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3