Model of Process Synchronization in Through Analysis

Author:

Martynyuk Oleksandr,

Abstract

Synchronization of parallel processes of distributed information systems (DIS) has been largely determined by decisions taken at the stages of their design. Having already been in structural and functional models, when determining cause- and-effect relationships for events and actions in DIS components, it becomes necessary to coordinate them. In the proposed multilevel systemic, structural and functional synchronization model, a hierarchy of such causal relationships with interlevel mappings, inheritance and encapsulation of events and actions have been formed. The model has been also based on hierarchical extended Petri nets, which make it possible to represent various aspects of a special analysis of technical diagnostics, in particular, analysis of correctness, verification, testing, for the adopted display of the asynchronous-behavioral nature of the multilevel interaction of DIS processes. Features of the synchronization model include mapping operations for cross- level inheritance and encapsulations that synchronize events and actions, as well as end-to-end synchronized quasi-order relationships and compatibility for them. The synchronization model is also distinguished by the possibility of specializing its objects, operations and relations for the tasks of check and recognition of behavioral properties set for analysis and verification, basic in technical diagnostics, including in online and offline testing. The synchronization model has allowed one to determine the formal conditions for methods of end-to-end asynchronous coordination of events and actions of multi-level models, that represent design solutions for DIS, in particular, for technical diagnostics methods, and also to reduce the computational complexity of a special synchronization analysis due to an end-to-end decomposition approach. The dimension of the synchronization model has been estimated using the representation of Petri net graphs and special graphs of reachable states using list structures. The above estimates determine the limits of applicability of the formal synchronization model.

Publisher

Lviv Polytechnic National University

Reference48 articles.

1. Coulouris G., Dollimore J., Kindberg T., Blair G. (2011). Distributed Systems: Concepts and Design. 5th ed. Addison-Wesley, p. 1067.

2. Bentaleb A., Yifan L., Xin J., et al. (2016) Parallel and Distributed Algorithms. National University of Singapore. Retrieved 20 July 2018, p. 348.

3. Blair G. (2018). Complex Distributed Systems: The Need for Fresh Perspectives. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), pp. 1410-1421. Available at: https://doi.org/10.1109/ICDCS.2018.00142

4. Caporuscio M., Funaro M., Ghezzi C., Issarny V. (2014). ubiREST: A RESTful Service-Oriented Middleware for Ubiquitous Networking. In: Bouguettaya A., Sheng Q., Daniel F. (eds) Advanced Web Services. Springer, New York, NY. Available at: https://doi.org/10.1007/978-1-4614-7535-4_20

5. Ranganathan A., Roy Campbell Roy. (2007). What is the Complexity of a Distributed Computing System? [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.8 573&rep=rep1&type=pdf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3