Positive risk balance: a comprehensive framework to ensure vehicle safety

Author:

Kauffmann Nina,Fahrenkrog Felix,Drees Ludwig,Raisch Florian

Abstract

AbstractThe introduction of automated vehicles promises an increase in traffic safety. Prior to its launch proof of the anticipated reduction in the sense of a positive risk balance compared with human driving performance is required from various stakeholders such as the European Union Commission, the German Ethic Commission, and the ISO TR 4804. To meet this requirement and to generate acceptance by the public and the regulatory authorities, a qualitative Risk- Benefit framework has been defined. This framework is based on literature research on approaches applied in other disciplines. This report depicts the framework, adapted from the pharmaceutical sector called PROACT-URL which serves as a structured procedure to demonstrate a positive risk balance in an understandable and transparent manner. The qualitative framework needs to be turned in quantitative methods once it should be applied. Therefore, two steps of the framework are discussed in more detail: First, the definition of adequate development thresholds that are required at an early stage of the development. Second the simulation-based assessment to prove the positive risk balance prior to the market introduction.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications

Reference92 articles.

1. Alvarez Lopez, P., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., & Wießner, E. (2018). Microscopic traffic simulation using SUMO. IEEE Intelligent Transportation Systems Conference (ITSC), IEEE. The 21st IEEE International Conference on Intelligent Transportation Systems, 4.-7. Nov. 2018 (pp. 2575–2582).

2. Arnoux, E. (2021). Scenarios from real life: PFA proposals for AD safety validation, French Scenarios Library, EUCAD Conference 2021. Retrieved from https://www.connectedautomateddriving.eu/wp-content/uploads/2021/05/EUCAD2021_D3_BO11_Emmanuel-Arnoux.pdf

3. Bast (Bundesanstalt für Straßenwesen). (2014). Ergebnisse Fahrleistungserhebung 2014. Retrieved from https://www.bast.de/BASt_2017/DE/Verkehrssicherheit/Fachthemen/U2-fahrleistung-2014/u2-Fahrleistung-2014-ergebnisse.html

4. Banks, V. A., Plant, K. L., & Stanton, N. A. (2019). Driving aviation forward; contrasting driving automation and aviation automation. Theoretical Issues in Ergonomics Science, 20(3), 250–264.

5. Benmimoun, M., Fahrenkrog, F., Zlocki, A., Eckstein, L. (2011). Incident detection based on vehicle CAN-data within the large scale field operational test “euroFOT” 22nd Enhanced Safety of Vehicles Conference. Retrieved from https://www-esv.nhtsa.dot.gov/Proceedings/22/files/22ESV-000042.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3