Instilling moral value alignment by means of multi-objective reinforcement learning

Author:

Rodriguez-Soto ManelORCID,Serramia Marc,Lopez-Sanchez Maite,Rodriguez-Aguilar Juan Antonio

Abstract

AbstractAI research is being challenged with ensuring that autonomous agents learn to behave ethically, namely in alignment with moral values. Here, we propose a novel way of tackling the value alignment problem as a two-step process. The first step consists on formalising moral values and value aligned behaviour based on philosophical foundations. Our formalisation is compatible with the framework of (Multi-Objective) Reinforcement Learning, to ease the handling of an agent’s individual and ethical objectives. The second step consists in designing an environment wherein an agent learns to behave ethically while pursuing its individual objective. We leverage on our theoretical results to introduce an algorithm that automates our two-step approach. In the cases where value-aligned behaviour is possible, our algorithm produces a learning environment for the agent wherein it will learn a value-aligned behaviour.

Funder

Ministerio de Ciencia, Innovación y Universidades

Horizon 2020

Generalitat de Catalunya

Instituto de Investigación en Inteligencia Artificial

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Computer Science Applications

Reference55 articles.

1. Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, p. 1. ACM, New York, NY, USA. https://doi.org/10.1145/1015330.1015430.

2. Abel, D., MacGlashan, J., & Littman, M. L. (2016). Reinforcement learning as a framework for ethical decision making. In AAAI Work.: AI, Ethics, and Society (vol. 92).

3. Allen, C., Smit, I., & Wallach, W. (2005). Artificial morality: Top-down, bottom-up, and hybrid approaches. Ethics and Information Technology, 7, 149–155. https://doi.org/10.1007/s10676-006-0004-4.

4. Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016). Concrete problems in ai safety. CoRR arXiv:1606.06565.

5. Arnold, T., Kasenberg, D., & Scheutz, M. (2017). Value alignment or misalignment - what will keep systems accountable?. In AAAI Workshops

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3