Minimum levels of interpretability for artificial moral agents

Author:

Vijayaraghavan AvishORCID,Badea CosminORCID

Abstract

AbstractAs artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making (MDM), also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent’s internal reasoning mechanisms for effective use and error correction. In this paper, we bridge the technical approaches to interpretability with construction of AMAs to establish minimal safety requirements for deployed AMAs. We begin by providing an overview of AI interpretability in the context of MDM, thereby framing different levels of interpretability (or transparency) in relation to the different ways of constructing AMAs. Introducing the concept of the Minimum Level of Interpretability (MLI) and drawing on examples from the field, we explore two overarching questions: whether a lack of model transparency prevents trust and whether model transparency helps us sufficiently understand AMAs. Finally, we conclude by recommending specific MLIs for various types of agent constructions, aiming to facilitate their safe deployment in real-world scenarios.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Reference137 articles.

1. Sallam, M.: Chatgpt utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare 11(6), 887 (2023). https://doi.org/10.3390/healthcare11060887

2. Eloundou, T., Manning, S., Mishkin, P., Rock, D.: Gpts are gpts: an early look at the labor market impact potential of large language models (2023). arXiv arXiv:2303.10130

3. Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., Hu, X.: Harnessing the power of llms in practice: a survey on chatgpt and beyond (2023). arXiv arXiv:2304.13712

4. Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S.G., Novikov, A., Barth-maron, G., Giménez, M., Sulsky, Y., Kay, J., Springenberg, J.T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N., Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., Freitas, N.: A generalist agent. Transactions on Machine Learning Research (2022). https://openreview.net/forum?id=1ikK0kHjvj

5. Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Bennani, M., Csordás, R., Dudzik, A.J., Bošnjak, M., Vitvitskyi, A., Rubanova, Y.: A generalist neural algorithmic learner. In: Proceedings of the First Learning on Graphs Conference (2022). https://openreview.net/forum?id=FebadKZf6Gd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3